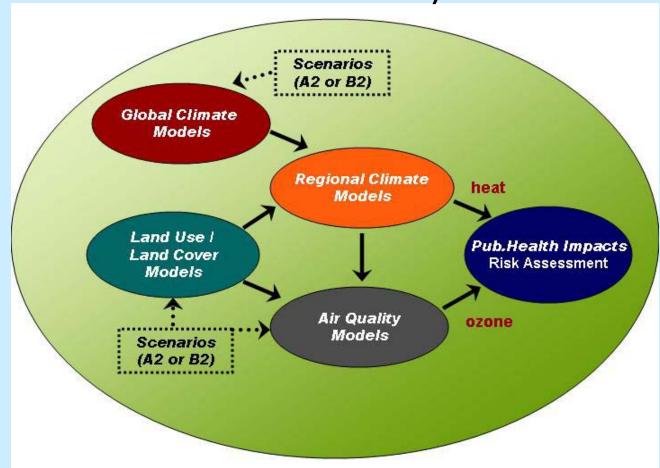
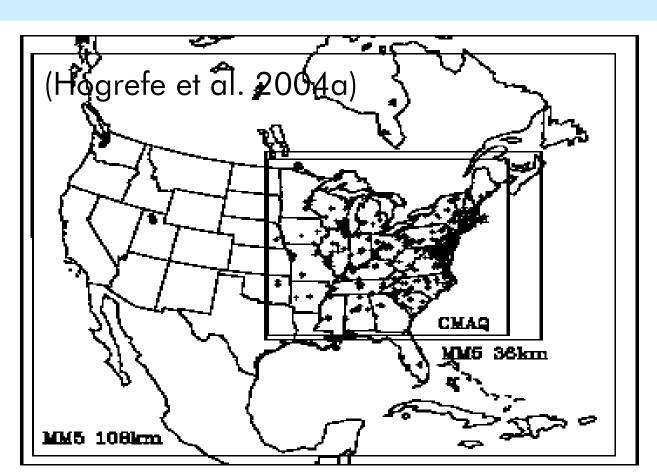
Assessing Potential Health Impacts New York

of Ozone & PM₂₅ Under a Changing Climate U.S. EPA-Science To Achieve Results (STAR) Program (Grant # R828733

Kim Knowlton¹, Michelle L Bell², Christian Hogrefe³, Cynthia Rosenzweig⁴, Patrick L Kinney¹


¹Columbia University, Mailman School of Public Health, NY, NY; ²Yale University, School of Forestry & Environmental Studies, New Haven, CT; ³Atmospheric Sciences Research Center, State University of New York, Albany, NY; ⁴NASA-Goddard Institute for Space Studies, NY, NY

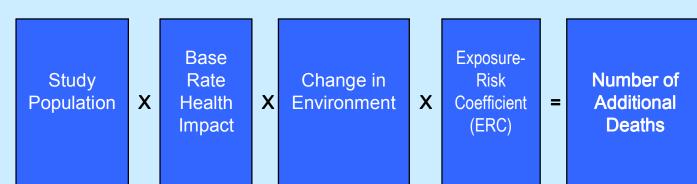
Introduction


- Potential impacts of climate change on heat-related illness and death have received considerable attention, yet less is known about climate-related changes in quality air and corresponding health effects (Kinney et al. in review; Knowlton et al. 2004; Holloway et al. 2004).
- > To address this need, the New York Climate & Health Project (NYCHP) developed a modeling framework to generate downscaled county-level estimates of ozone and PM_{2.5} air quality under a changing climate and project human health impacts.

Methods 1

1. NYCHP climate model system:

- GISS coupled global ocean/atmosphere model driven by IPCC SRES scenarios (A2 & B2)
- MM5 regional climate model takes initial and boundary conditions from GISS GCM (Lynn et al. in review)

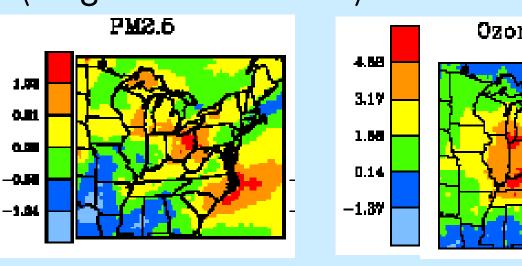

- > MM5 run on 2 nested domains of 108 km and 36 km over eastern US, for 5 mid-decadal summers, 2050s vs. 1990s
- Using GCM-MM5 fields as input, CMAQ (Community Multiscale Air Quality) model simulated hourly surface ozone and PM $_{2.5}$ concentrations on a 36 km grid

Methods 2

- 2. CMAQ-simulated summer seasonal conditions (June-August) for five consecutive mid-decadal years (e.g., 1993-1997) in the 1990s vs.2050s
- Emissions of ozone precursors held constant at 1996 NET levels
- Estimated concentrations of daily average $PM_{2.5}$ include total sulfate, nitrate, ammonium, organic carbon, elemental carbon and crustal material

Methods 3: Health impacts

3. Evaluated from 36-km interpolated CMAQ fields via a county-level health risk assessment:



- . Exposure-risk coefficients (ERCs) from epidemiological literature applied:
- Mortality RR 1.0087 (1.0055, 1.0118) per 10 ppb increase in daily O_3 , from Bell et al. (2005) metaanalysis of 39 O₃-mortality time series studies
- Mortality RR 1.06 (1.02-1.11) per 10 μg/m3 increase in long-term PM_{2.5} exposure, from Pope et al. (2002)
- 5. Assume regional population constant at Census 2000 levels

Results

Regional mean summer O ₃ & PM _{2.5}	1990s	2050s A2	2050s B2
O ₃ simulated concentration, summer daily 1-hr max (ppb)	56.39	58.53	59.95
PM _{2.5} simulated concentration, summer daily mean (ug/m³)	14.9	14.6	(n/a)

➤ Slight decrease in total PM_{2.5} over the 31-county study area by 2050s; domainwide, slight increase in total $PM_{2.5}$ and larger summer O₃ increase by the 2050s (Hogrefe et al. 2005)

Higher temperatures may favor more SO₂ conversion to sulfate, but some volatile nitrates and organic carbon aerosols transition back into gas phase as temperatures rise (Hogrefe et al.

-5.0 - -2.5%

- Regional mortality projections are sensitive to climate-related change: 2050s A2: +4.3% O₃-related 2050s B2: +7.0% O₃-related 2050s A2: -2.0% PM_{2.5}-related
- Population-constant assumption yields conservative mortality projections
- Results suggest need for further consideration of climate change effects on air quality in future regulatory frameworks

Future directions

- Research needed consider to feedbacks between climate change, emissions, and climate-adaptive strategies i.e., air-conditioning (Hogrefe et al., 2005a)
- NYCHP model strategy could be applied with alternative models, regions, scenarios, and health outcomes

7.5 - 10.0%

5.0 - 7.5%

2.5 - 5.0%

0.0 - 2.5%

-2.5 - 0.0%

-5.0- -2.5%

Results: Ozone- & PM_{2.5}-related Mortality

-5 .0 - -2.5%

A2 2050s vs. 1990s, 2050s OZONE-RELATED MORTALITY CHANGES PM2.5-RELATED MORTALITY CHANGE 0.8 0.5 0.5 10.0 - 12.5% 10.0 - 12.5% 7.5 - 10.0% 7.5 - 10.0% 5.0 - 7.5% 5.0 - 7.5% 2.5 - 5.0% 2.5 - 5.0% 0.0 - 2.5% 0.0 - 2.5% -2.5 - 0.0% -2.5 - 0.0%

Summer O₃-related mortality changes, 2050s vs. 1990s: Percent difference in 2050s A2-1990s (Left) vs. 2050s B2-1990s (Right)

Rosenzweig C, et al. October 2005. CMAS/Models-3 Workshop, October 2005. Hogrefe C, Leung R, Mickley L, et al. 2005a. *Environmental Manager*, Air & Waste Mgmt Assoc (October 2005), 19-23 Hogrefe C, Biswas J, Lynn B, et al. 2004. Atmos Env 38:2627-2638.

Hogrefe C, et al. 2004a. J Geophys Res109, D22301, doi:10.1029/2004JD004690.

Knowlton K, Rosenthal J, Hogrefe C, et al. 2004. Environ Health Perspect 112:1557-1563.

Holloway TA, Kinney PL, Sauthoff AJ. 2005. Energy for Sustainable Dev 9(3):49-57. Kinney PL, Rosenthal JE, Rosenzweig C, et al. Assessing potential public health impacts of changing climate and land use: the New York Climate and Health Project. In: Ruth M, Donaghy K, Kirshen P, eds. Climate Change and Variability: Consequences and Responses. Washington, D.C.: US EPA, 2005 (in press).

Lynn BH, Rosenzweig C, Goldberg MS, et al. 2005 (in review). Global and Planetary Change. Pope III CA, Burnett RT, Thun MJ, et al. 2002. JAMA 287(9):1132-1141.